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ABSTRACT 

The global Internet is a federation of computer networks that are owned 

and operated by Internet Service Providers (ISPs).  Because ISPs do not share 

topology information for competitive and privacy reasons, researchers, operators, 

and policy makers who want to assess the performance and reliability of the 

system as a whole must infer structure from limited measurement data.  We use 

reverse-engineering to infer underlying design principles of a national ISP and 

then develop models capable of generating ISP topologies ranging from regional 

to national scales.  We contrast the behavior of optimal versus heuristic designs 

in terms of cost and performance.  Unlike previous approaches that simply 

replicate observed network connectivity statistics, our approach yields networks 

that reflect the technological capabilities, economic constraints, operational 

requirements, and performance objectives faced by real ISPs.  We complement 

our mathematics with computational tools that facilitate this network generation 

and analysis.  To our knowledge, this thesis represents the first effort to 

incorporate these modeling principles in a process capable of generating realistic 

ISP networks at the national scale. 
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EXECUTIVE SUMMARY 

The Internet is a critical component of our economic and social fabric, and 

many civilian and military systems are dependent upon it in one way or another. 

The foundation of the Internet is the physical network of computers, routers, and 

fiber optical lines connecting them.  Internet Service Providers (ISPs), the owners 

and operators of these networks, do not publish their topology information, and 

thus researchers, IT professionals, and even ISP operators do not know the 

Internet's large-scale topology structure.  To fill this void, researchers use 

experimental methods to measure and infer the router-level structure of the 

Internet. 

One popular approach to characterizing router-level network structure is to 

apply graph theoretic and/or statistical techniques to the connectivity patterns 

observed in measurement experiments.  These characterizations are typically 

accompanied by generative models that faithfully reproduce the observed 

statistics.  This approach leads to descriptive models of network structure that, 

while interesting, typically fail to reveal explanatory or causal relationships at 

work in the design and operation of real ISP networks. 

This thesis follows an alternative approach in which the causal forces 

shaping network design and deployment are reflected in an optimization problem. 

This type of optimization-based reverse engineering has roots in previous work, 

but this thesis represents the first effort to incorporate these modeling principles 

in a process capable of representing a router-level network at a national scale. 

Using this alternative modeling approach, we seek to design router-level 

topologies that provide sufficient and reliable bandwidth to network customers at 

a reasonable cost.  To accomplish this, we do three things.  One, we analyze an 

existing router-level topology for a U.S. National Tier-1 ISP and reverse engineer 

its key design principles (e.g., backbone routers occurring in pairs for 

redundancy).  Two, we forward engineer a network topology generation process 
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based upon the design principles that we observe.  In this generation process, 

we develop both heuristic and optimal generation methods.  Finally, we validate 

that the network topologies provide sufficient bandwidth and are realistic based 

on what we currently know about network topologies.  In addition, we compare 

and contrast heuristic and optimally generated topologies to quantify their 

differences in terms of cost and performance. 

We generate networks for eight different customer populations that range 

from small regional populations, e.g., Southern California, to the National level, 

e.g., the entire United States.  For each customer population we generate three 

topologies, one using the heuristic method, one using an optimization model that 

maximizes throughput subject to a budget, and a third using an optimization 

model that minimizes cost subject to a throughput requirement. 

We compare the network topologies based on two measures of 

performance: cost, and throughput.  Cost is sum of the cost of each network 

component (routers and links) in the router-level topology and is measured in 

thousands of dollars ($K).  Throughput is represented by the sum of the flow 

across all pairs of communicating routers on the network and is measured by 

bandwidth in gigabits per second (Gps).  To represent fair traffic demand we 

assume a gravity model, which constrains the demand between each pair of 

communicating routers to be proportional to the product of their customer 

populations. 

There are three main contributions of this thesis.  First, it presents a 

systematic process by which one can generate a “realistic, yet fictitious” ISP 

networks at a national scale.  The topologies generated from our process are 

realistic, in the sense that (1) they adhere to basic technological and economic 

constraints facing the design of real ISP networks; (2) they are derived from real 

geographic and population data representing real customer markets; and (3) they 

are generated at the level of individual routers, meaning that these networks can 

be used as a basis for packet-level simulations of Internet traffic. 



 xvii

The second main contribution of this thesis is the quantitative comparison 

of heuristic and optimal topology generation schemes, in terms of network 

performance and cost.  We use these results to develop insight into the tradeoffs 

between optimal and heuristic design philosophies at work in real ISPs. 

Third, we support our analytic and numerical results with an automated 

decision support tool developed in Excel/VBA and using state-of-the-art 

commercial optimization software (GAMS/CPLEX).  This integrated tool allows its 

user to conveniently select customer markets at the national scale, design and 

illustrate a high-level “backbone” ISP network, and then generate the 

corresponding router-level topology.  To date, comparable topology generation 

tools do not exist within the scientific community.   

Collectively, this thesis provides researchers and operators with the 

mathematical framework and computational tools necessary to explore the 

relationship between ISP structure and function, both for the current operational 

environment and in the future. 
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I. INTRODUCTION  

The Internet is a critical component of our economic and social fabric and 

many civilian and military systems are dependent upon it in one way or another.  

The global Internet is a federation of independently owned and operated 

computer networks that support a standard suite of communication protocols.  

Internet Service Providers (ISPs) are the owner-operators of these networks.  

ISPs are classified into tiers based on peering (settlement free interconnection) 

relationships.  Tier-1 ISPs peer with every other Tier-1 ISP and therefore can 

reach any network on the Internet without purchasing transit.  AT&T and Sprint 

are examples of U.S. National Tier-1 ISPs.  Entities within the Department of 

Defense are also ISPs in the sense that they build and operate a variety of global 

networks running the Internet protocol suite and are connected to other ISP 

networks. 

The foundation of the Internet is the physical network of computers, 

routers, and fiber-optical lines connecting them.  The design of this router-level 

network is important because it directly affects the overall cost, reliability, and 

performance of the system.  The connectivity within a router-level network is not 

arbitrary or random; rather, it follows from design that has specific structure to 

support communication between the network’s customers.  The relationship 

between the customer population and the network topology reflects many 

elements such as technological capabilities, economic constraints, performance 

objectives, and any design methodologies in use. 

Over the past decade, there has been considerable interest in 

understanding the large-scale structure of the Internet at the router-level and at 

other levels of abstraction.  Because ISPs regard their network topologies as a 

source of competitive advantage, they are reluctant to share topology 

information, thereby leaving researchers, IT professionals, and even ISP 

operators in the dark about the structure of the router-level Internet as a whole. 
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To overcome the lack of publicly available Internet topology data, 

researchers have developed a variety of techniques to infer network structure 

from measurement experiments.  These techniques use well-understood 

software tools, such as traceroute, to measure traffic as it traverses the 

network.  This measurement data is then analyzed with the hope of identifying 

key structural features that dictate network performance, robustness, and 

vulnerability. 

One popular approach to characterizing router-level network structure has 

been to apply graph theoretic and/or statistical techniques to the connectivity 

patterns observed in measurement experiments.  These characterizations are 

typically accompanied by generative models that faithfully reproduce the 

observed statistics (Li et al. 2004).  While this approach leads to descriptive 

models of network structure that are interesting and provocative, it typically fails 

to reveal explanatory or causal relationships at work in the design and operation 

of real ISP networks.  Owing to the inherent diversity among networks sharing 

the same statistics, the ability of a single model to replicate observed statistics 

provides little validation that it is accurate or even realistic (Alderson, 2008). 

This thesis follows an alternative approach in which the causal forces 

shaping network design and deployment are reflected in an optimization problem.  

The roots of this type of optimization-based reverse engineering can be traced to 

Alderson et al. (2003) and Alderson et al. (2005), but this thesis represents the 

first effort to incorporate these modeling principles in a process capable of 

representing a router-level network at a national scale.   

A fundamental challenge with this alternative approach is that network 

design problems are inherently hard to solve optimally, and so heuristics are 

often used in practice.   However, it is unclear what potential cost is being paid by 

using heuristic solutions.  In other words, what tradeoffs in performance and cost 

exist between optimally and heuristically designed networks? 
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This thesis explores the relationship between customer population and 

network topology in two ways.  First, in Chapter II, we study the topology of a real 

Tier-1 ISP and, using census data, we infer the way in which design patterns, or 

motifs, support functional needs in terms of throughput and reliability.  We refer 

to this process as reverse engineering.  Then, in Chapter III, we use the inferred 

relationships as the basis for a forward engineering design process that 

generates optimal network topologies under competing objectives of 

performance and cost.  In Chapter IV, we compare the output from these two 

approaches for eight different case studies, ranging from U.S. regional to national 

markets.  We summarize our results and describe opportunities for future work in 

Chapter V. 

 

 
Figure 1.   The structure of an ISP Network Topology reflects the functional need 

to support its customers. 

There are three main contributions of this thesis.  First, this thesis 

presents a systematic process by which one can generate a “realistic, yet 

fictitious” ISP networks at a national scale.  The topologies generated from our 

process are realistic, in the sense that (1) they adhere to basic technological and 

economic constraints facing the design of real ISP networks; (2) they are derived 

from real geographic and population data representing real customer markets; 

and (3) they are generated at the level of individual routers, meaning that these 

networks can be used as a basis for packet-level simulations of Internet traffic.  
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The resulting network topologies are dramatically different in structure and fidelity 

then currently popular topology generation schemes that replicate statistical 

network features (Li et al., 2004). 

The second main contribution of this thesis is the quantitative comparison 

of heuristic and optimal topology generation schemes, in terms of network 

performance and cost.  We use these results to develop insight into the tradeoffs 

between optimal and heuristic design philosophies at work in real ISPs. 

Third, we support our analytic and numerical results with an automated 

decision support tool developed in MS Excel with Visual Basic for Applications 

(VBA) and using state-of-the-art commercial optimization software 

(GAMS/CPLEX).  This integrated tool allows its user to conveniently select 

customer markets at the national scale, design and illustrate a high-level 

“backbone” ISP network, and then generate the corresponding router-level 

topology.  To date, comparable topology generation tools do not exist within the 

scientific community.   

Collectively, this thesis provides researchers and operators with the 

mathematical framework and computational tools necessary to explore the 

relationship between ISP structure and function, both for the current operational 

environment and in the future. 



 5

II. REVERSE ENGINEERING A NATIONAL ISP NETWORK 

Our approach to router-level topology modeling begins with three 

assumptions.  First, we assume that a network topology is not random but has 

structural features that support the functional requirements of the network’s 

customer population.  Second, we assume that the structure of the topology 

reflects heuristic design patterns, or motifs, used by the engineers of the network 

to design it.  Third, we assume that these design motifs can be inferred using an 

existing network topology and its supported population. 

An Autonomous Systems (AS) is an IP network under single 

administrative control.  That is, an AS has a single decision maker (administrator) 

who is responsible for the provisioning, traffic engineering, and routing policies 

that are seen by the rest of the Internet.  We focus our research on the AS 

because it as this level of abstraction that network topology design decisions are 

made.  Although a Tier-1 ISP may have one or more ASes, we will use the terms 

AS and ISP interchangeably in this thesis.  We illustrate the Internet as a 

collection of interconnected ASes in Figure 2.  In this chapter, we infer the design 

motifs for AS 7018, a national network owned and operated by AT&T. 

 

 
Figure 2.   An Autonomous System (AS) is an IP network under single administrative 

control. The Internet is a collection of interconnected ASes. Connections 
between ASes represent peering relationships. 
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A. DATA 

1. U.S. Census Bureau Data 

The United States Census Bureau maintains population data categorized 

by geographic subdivisions.  Cities, Counties, and Metropolitan Statistical Areas 

are three principle subdivisions.  

A Metropolitan Statistical Area (MSA) is a central urbanized area—a 

contiguous area of relatively high population density.  An MSA consists of a 

collection of counties that are connected by strong social and economic ties as 

measured by commuting and employment (U.S. Census Bureau, 2007). 

We use MSAs to represent regional markets for ISPs. 

2. Rocketfuel Data 

We derive design motifs from router-level topology data for AS 7018 as it 

was collected circa 2003.  The data is publicly available and was collected by the 

Rocketfuel Project (Spring et al., 2003), an ISP topology-mapping tool that uses 

focused traceroute experiments to infer the internal router-level structure of a 

single ISP.  The Rocketfuel project has mapped several ISPs within the United 

States, Europe and Australia.  For each AS studied, Rocketfuel data includes 

information about routers (type, geographic location, etc.) and the links 

connecting them.  Although the Rocketfuel maps are not 100% accurate, they 

have been broadly validated and are considered among the best of currently 

available router-level topology maps. 
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B. ISP BACKBONE TOPOLOGY STRUCTURE 

1. Routers and Links 

Routers are the building blocks of computer networks.  Routers are 

specialized computers that receive incoming network traffic and forward it 

appropriately to its next destination.  Routers are connected by physical wires 

(e.g., optical fibers or copper wires).  For long-haul traffic, a network of optical 

fibers comprises the optical layer of the network upon which higher layers of the 

network are built.  From an Internet Protocol (IP) perspective, routers are 

connected by logical links.  An IP link represents one-hop IP connectivity 

between two routers.  Throughout this thesis, all links are IP links. 

Routers vary widely based on their purpose, but for a Tier-1 ISP they can 

be broadly categorized as either backbone or access routers.  Backbone routers 

exist within an AS and communicate primarily to routers belonging to the AS.  

They typically support few high bandwidth links and serve to interconnect 

backbone routers over long distances, or as aggregation points for access 

routers.  Access routers communicate internally to an AS’s core routers and 

externally to customers.  They typically support many low bandwidth links on the 

customer side and connect to a few backbone routers in the network's backbone. 
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2. Points of Presence (POP) 

A Point of Presence (POP) is a collocated logical collection of routers that 

serves primarily as an access point for the network's customers. The POPs in an 

AS are geographically distributed and each correspond roughly to a regional 

market. Every router in an AS belongs to a POP.  Access routers within a POP 

serve as the physical connection between the ISP and its customers. 

Some POPs have backbone routers in addition to access routers.  This 

infrastructure can be thought of as "sitting atop" the access infrastructure.  The 

backbone routers within select POPs are interconnected by high capacity links 

that span relatively large distances to other POPs. 

Every access router within a POP must connect to a backbone router.  

When backbone routers are collocated with access routers, this connection is 

internal to the POP.  In POPs that do not have a backbone router, the access 

routers must connect to a backbone router in a nearby POP. 

Throughout this thesis, we use the following terminology when referring to 

the backbone topology. 

• A Core POP is a POP that has backbone routers. 

• An Edge POP is a POP that does not have backbone 
routers. 

• A Link is one or more logical connections between two 
routers, each in a different POP. 

• An Access-Backbone Link is a link between an Edge POP 
and a Core POP. 

• A Backbone-Backbone Link is a link between two Core 
POPs. 

We illustrate a backbone topology structure in Figure 3.   
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Figure 3.   Conceptual Representation of an ISP Backbone Topology. 



 10

C. BACKBONE TOPOLOGY FOR AS 7018 

We illustrate the backbone topology for AS 7018 as measured by 

Rocketfuel in Figure 4.  Dark nodes represent the Core POPs and light nodes 

represent the Edge POPs.   

The POPs in AS 7018 correspond reasonably well to MSAs.  Larger MSAs 

may have multiple POPs in them.  In these cases, only one of these POPs has 

backbone routers and the vast majority of the access routers.  An example of this 

is Chicago, which has POPs cgcil, chcil, chgil, and okbil with (16, 1, 1, 1) 

access routers and (6, 0, 0, 0) backbone routers, respectively.  The population 

and router counts for AS 7018’s POPs and corresponding MSAs, sorted by 

population, are listed in Table 1.   

Edge POPs have an average of 1.1 connections indicating that edge 

POPs typically connect only to a single core POP.  Core POPs support an 

average of 5.3 edge POPs and connect to an average of 3.8 core POPs.  This 

structure is characteristic of a “hub and spoke” design motif. 
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Figure 4.   Backbone Topology for AS 7018 Rocketfuel Data.  Nodes represent 

Points of Presence (POP).  The Core POPs are labeled with their DNS 
location code.  Links represent at least one logical connection between a 
pair of routers, each in a different POP.  The topology reflects a hub and 
spoke design motif. 



 12

 
Table 1.    Router counts for AS 7018 Point of Presences with corresponding 

Metropolitan Statistical Area population. 

Metropolitan Statistical Area gbr ar Population [2000 
Census] 

New York, NY 6 26 11,296,377 
Los Angeles, CA 6 15 9,519,338 
Chicago, IL 6 19 7,628,412 
Houston-Sugar Land-Baytown, TX 2 4 4,715,407 
Atlanta-Sandy Springs-Marietta, GA 6 13 4,247,981 
Philadelphia, PA 2 4 3,849,647 
Washington D.C. 6 13 3,727,565 
Dallas, TX 6 13 3,451,226 
Riverside-San Bernardino-Ontario, CA 0 3 3,254,821 
Phoenix-Mesa-Scottsdale, AZ 2 5 3,251,876 
Minneapolis-St. Paul-Bloomington, MN 0 3 2,968,806 
Anaheim, CA 0 2 2,846,289 
San Diego-Carlsbad-San Marcos, CA 2 5 2,813,833 
Long Island, NY 0 1 2,753,913 
St. Louis, MO 8 11 2,721,491 
Baltimore-Towson, MD 0 1 2,552,994 
Pittsburgh, PA 0 2 2,431,087 
Tampa-St. Petersburg-Clearwater, FL 0 3 2,395,997 
Oakland, CA 0 1 2,392,557 
Warren, MI 0 1 2,391,395 
Seattle, WA 4 7 2,343,058 
Mimai, FL 0 4 2,253,362 
Edison, NJ 0 2 2,173,869 
Denver-Aurora, CO 4 8 2,157,756 
Cleveland-Elyria-Mentor, OH 0 3 2,148,143 
Newark, NJ 0 4 2,098,843 
Detroit, MI 2 4 2,061,162 
Cincinnati-Middletown, OH 0 1 2,009,632 
Portland-Vancouver-Beaverton, OR 0 2 1,927,881 
Kansas City, MO 2 2 1,836,038 
Boston, MA 4 9 1,812,937 
San Jose-Sunnyvale-Santa Clara, CA 0 3 1,735,819 
San Francisco, CA 6 15 1,731,183 
San Antonio, TX 0 1 1,711,703 
Fortworth, TX 0 2 1,710,318 
Orlando-Kissimmee, FL 4 11 1,644,561 
Fort Lauderdale, FL 0 3 1,623,018 
Providence-New Bedford-Fall River, RI 0 1 1,582,997 
Virginia Beach-Norfolk-Newport News, VA 0 2 1,576,370 
Indianapolis-Carmel, IN 0 2 1,525,104 
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Metropolitan Statistical Area gbr ar Population [2000 
Census] 

Milwaukee-Waukesha-West Allis, WI 0 2 1,500,741 
Cambridge, MA 0 1 1,465,396 
Las Vegas-Paradise, NV 0 1 1,375,765 
Charlotte-Gastonia-Concord, NC 0 2 1,330,448 
New Orleans-Metairie-Kenner, LA 0 2 1,316,510 
Nashville-Davidson, TN 0 2 1,311,789 
Austin-Round Rock, TX 2 3 1,249,763 
Memphis, TN 0 1 1,205,204 
Camden, NJ 0 1 1,186,999 
Buffalo-Niagara Falls, NY 0 1 1,170,111 
Louisville/Jefferson County, KY 0 1 1,161,975 
Hartford-West Hartford-East Hartford, CT 0 2 1,148,618 
West Palm Beach, FL 0 1 1,131,184 
Jacksonville, FL 0 1 1,122,750 
Richmond, VA 0 1 1,096,957 
Oklahoma City, OK 0 2 1,095,421 
Bethesda, MD 0 1 1,068,618 
Birmingham-Hoover, AL 0 1 1,052,238 
Rochester, NY 0 1 1,037,831 
Salt Lake City, UT 0 2 968,858 
Bridgeport-Stamford-Norwalk, CT 0 2 882,567 
Honolulu, HI 0 1 876,156 
Tulsa, OK 0 1 859,532 
Dayton, OH 0 1 848,153 
Tucson, AZ 0 1 843,746 
Albany-Schenectady-Troy, NY 0 2 825,875 
Raleigh-Cary, NC 0 2 797,071 
Omaha-Council Bluffs, NE 0 2 767,041 
Worcester, MA 0 1 750,963 
Grand Rapids-Wyoming, MI 0 1 740,482 
Albuquerque, NM 0 1 729,649 
Akron, OH 0 1 694,960 
Syracuse, NY 0 1 650,154 
Columbia, SC 0 1 647,158 
Greensboro-High Point, NC 0 2 643,430 
Little Rock-North Little Rock-Conway, AR 0 1 610,518 
Colorado Springs, CO 0 2 537,484 
Harrisburg-Carlisle, PA 0 2 509,074 
Madison, WI 0 1 501,774 
Portland-South Portland-Biddeford, ME 0 1 487,568 
Des Moines-West Des Moines, IA 0 1 481,394 
Spokane, WA 0 1 417,939 
Manchester-Nashua, NH 0 1 380,841 
Davenport-Moline-Rock Island, IA 0 3 376,019 
Springfield, MO 0 1 368,374 
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Metropolitan Statistical Area gbr ar Population [2000 
Census] 

Trenton-Ewing, NJ 0 2 350,761 
South Bend-Mishawaka, IN 0 1 316,663 
Lynchburg, VA 2 0 228,616 
Champaign-Urbana, IL 0 2 210,275 

D. POINT OF PRESENCE ROUTER STRUCTURE FOR AS 7018 

A POP is designed to aggregate the traffic from many low bandwidth 

customer links into a few high bandwidth inter-POP links.  This aggregation 

occurs at the access and backbone routers.  The interconnection of routers 

within a single POP, reflects a redundant hierarchal design motif. 

1. Access Router Aggregation 

Access routers aggregate traffic between customer routers and backbone 

routers.  In AS 7018, access routers have two parallel upstream connections, 

one each to a backbone router, providing for upstream redundancy, and some 

number of downstream customer router connections.  The distribution of 

downstream customer router connections per access router is shown in Figure 5.  

The distribution reinforces that access routers can support a finite number of 

customer connections.  This distribution is uni-modal and reasonably symmetric.  

The lower and upper quartiles occur at 20 and 40 customer connections.  

Engineering can explain the tails of the distribution.  The lower tail may represent 

incomplete data, where not all connections on a router are observed, routers that 

support very few customers perhaps in remote sites with few customers, or new 

routers that have not been fully loaded.  The upper tail may represent routers that 

are overloaded perhaps to defer the cost of installing additional routers. 
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Figure 5.    Distribution of Customer Connections per Access Router for AS 7018. 

2. Backbone Router Aggregation 

Backbone routers aggregate traffic from access routers into a few high 

bandwidth inter-POP connections.  For AS 7018, we observe that if backbone 

routers are present within a POP, they occur in pairs, and the backbone router 

configuration reflects the number of backbone routers in the POP (two, four or 

six).  These configurations are illustrated in Figure 6.  The backbone routers 

need to support both downstream access router connections and upstream inter-

POP backbone router connections.  A two-backbone router configuration 

supports both downstream and upstream connections from the same pair of 

backbone routers.  Different pairs of backbone routers handle the downstream 

and upstream connections in four-backbone and six-backbone router 

configurations. 
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Figure 6.   Router connectivity within an individual POP.  (a) Two-Backbone Router 

POP.  (b) Four-Backbone Router POP.  (c) Six-Backbone Router POP. 
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In AS 7018, the number of backbone routers is closely related to the 

number of access routers, increasing as the number of access routers increases 

as illustrated in Figure 7.  The edge POPs always have less then four access 

routers.  All but three core POPs have three or more access routers.  The three 

exceptions are known legacy sites, supporting dial-up access and other types of 

connectivity. 

 

Backbone Routers vs. Access 
Routers

3

8 61 37 2

2 3 1

1 1 1 1

3 1 2 1 1

0

2

4

6

8

0 2 4 6 8 10 12 14

Number of Access Routers
 

 
Figure 7.   Number of Gigabit Backbone Routers vs. Number of Access Routers for 

each Point of Presence in AS 7018.  The number in each data point is the 
number of POPs observed with that combination of access routers and 
backbone routers. 
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3. Customer vs. Population 

The number of customer connections in an ISP's POP reflects local 

population and market penetration.  POPs in locations with high populations tend 

to have more customers, access routers, and backbone routers.  However, for 

AS 7018, we observed no linear relationship between population and the number 

of backbone routers, number of access routers, or number of customers.  We 

assume then that the ISP has a different market penetration for each MSA that 

relates the number of network customers in the MSA to the census population of 

the MSA. 
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E. SUMMARY OF DESIGN PRINCIPLES 

We conclude this chapter with a list of the structural features that we 

observe in Rocketfuel data for AS 7018.  These features make clear sense in the 

context of engineering design and so we use them as design principles in our 

forward engineering process. 

Table 2.   Observed features in the AS 7018 backbone topology and their 
engineering design reasoning. 

Observed Feature Engineering Design Reasoning 
-POPs can be divided into two distinct 
classes: those with backbone routers 
and those without backbone routers. 
 

While all POPs aggregate traffic, only 
some POPs support backbone 
infrastructure (Core). 

-POPs without backbone routers 
typically have one POP-POP link.  This 
link is to the nearest POP that has 
backbone routers. 
 

It is more efficient to connect the 
access routers in a small POP to the 
backbone routers in a nearby larger 
POP then to build and maintain 
backbone structure at a small POP. 
 

-POPs with backbone routers typically 
have many POP-POP links.  These 
links connect to POPs that have no 
backbone routers and to POPs that 
have backbone routers. 

Backbone POPs serve as hubs in “hub 
and spoke” design motif. 
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Table 3.   Observed features in the AS 7018 point of presence structure and their 

engineering design reasoning. 

Observed Feature Engineering Design Reasoning 
-A POP can have zero, two, four, or six 
backbone routers. 
 

Backbone routers occur in pairs for 
redundancy. 

-The POP structure is related to the 
number of backbone routers in the 
POP. 
 

The backbone router configuration 
within a POP determines its bandwidth 
capacity. 

-The number of backbone routers is 
related to the number of access routers 
in the POP. 

The backbone routers serve to 
aggregate traffic from the access 
routers.  Therefore the number of 
access routers drives the backbone 
router requirements. 
 

-The POP structure is scalable, i.e., the 
two-backbone router structure is 
contained within the four-backbone 
router structure and the four-backbone 
router structure is contained within the 
six-backbone router structure. 
 

Scalable structure supports the 
expansion of POPs as more capacity is 
required. 

-An access router connects in parallel 
to a pair of backbone routers. 

Connecting in parallel provides 
redundancy in case of a backbone 
router or link failing  

-An access router can support a finite 
number of customers. 

Router degree is constrained by the 
number of line cards it can support.  
Line cards have a port/bandwidth 
configuration. 
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III. FORWARD ENGINEERING NETWORK TOPOLOGIES 

In this chapter, we develop a process for generating ISP network 

topologies using the structural features observed in the AS 7018 network as a 

template.  We start by grouping customer populations by geographical regions.  

Our objective is then to construct a network topology that provides reliable and 

sufficient connectivity for the ISP's customer population at a reasonable cost.  

The generation process is comprised of the three sequential stages illustrated in 

Figure 8.   

 
Figure 8.   Network Topology Generation Process.  

Backbone topology generation is the central focus of this thesis.  The 

design of the backbone topology fundamentally impacts the cost, throughput and 

robustness of the network.  We develop both heuristic and optimal methods for 

designing the backbone topology.  We also develop pre-processing and post-

processing stages to infer parameters and work with real data.  We apply the 

same pre-processing and post-processing to all networks. 

A. PRE-PROCESSING: GATHERING NETWORK REQUIREMENTS 

In the Pre-Processing Stage, we associate a node with each geographical 

region (MSA), identify the customer demand for the MSA, and choose the access 

router interconnection structure to support that demand.  Inputs to the pre-

processing stage include the census population and an assumed market 

penetration for each MSA in the network.  Outputs of the pre-processing stage 

include the assumed number of customers and number of access routers at each 

node.  We define demand as the number of customers per access router.  We 
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generate the number of customers and access routers using the Customer and 

Access Router Assignment Model (CARAM).  An illustration of the pre-

processing stage for each MSA appears in Figure 9.   

 
Figure 9.   Pre-Processing Stage.  This stage is applied to each MSA in turn.  

Inputs are the population and market penetration of each MSA.  The 
outputs are the number of customers and access routers at each node. 

1. Customer and Access Router Assignment Model (CARAM)  

We consider a two-step deterministic model.  The first step calculates the 

number of customers at a node based on the node’s population and market 

penetration.  We model the number of customers, ci , at node i  as  

 c
i
= p

i
w

i
⎡⎢ ⎤⎥  (1.1) 

where  pi  is the population at node i , wi  is the (exogenously given) market 

penetration at node  i , and  •⎡⎢ ⎤⎥  represents the ceiling operator. 

The second step calculates the number of access routers at node  i , ai , 

based on the number of customers at node i , as: 
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 (1.2) 

where  fs
 is the maximum number of customer that a single access router can 

support and  fm
 is the maximum number of customers that multiple access 

routers can support.  We assume that fm ≤ fs . 
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We illustrate the behavior of CARAM as a function of the number of 

customers in Figure 10.  We assume the number of customers,  ci , in each node 

is linearly proportional to the customer population.  Following equation (1.2), the 

number of access routers,  ai , is an increasing step function of  ci  with steps 

occurring on a regular interval except for the first and second step.  We also 

show customers per access router, denoted bi , to illustrate the effect of 

parameters  fs  and  fm .  If the ci  is less then fs , then bi is bounded above by fs .  

Otherwise, it is bounded above by fm .  The number of customers per access 

router is a discrete step function.  As an example, given fs = 60  and   fm = 40 , a 

node with 500 customers would have an assumed 13 access routers with 38 

customers per access router. 
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Figure 10.   The Customer and Access Router Assignment Model (CARAM) 

prescribes the number of customers and access routers at a node given 
the population and market penetration at the node.  The number of 
customers at a node is linearly proportional to the weighted population.  
The number of access routers assigned is dependent upon the number of 
customers.  (i.e., a node with 500 customers would have 13 access 
routers with 38 customers per access router) 
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B. BACKBONE TOPOLOGY GENERATION 

In the Backbone Topology Generation Stage, we interconnect the nodes 

associated with each geographic market into one network.  We use the number 

of customers and number of access routers for each node (from the pre-

processing stage) along with the node locations as inputs to this stage.  The 

number of backbone routers for each node and a set of backbone links (node-

node links) are outputs.  Together these form the backbone topology.  We 

illustrate the inputs and outputs in Figure 11.   

 
Figure 11.   Backbone Topology Generation Inputs and Outputs.  

We develop three topology generation models for this stage, one heuristic 

and two based on optimization models.  We refer to the heuristic model as the 

Backbone Router and Link Assignment Model (BRLAM).  We refer to the 

optimization models as the Minimum Cost Model (MCM) and the Maximum Flow 

Model (MFM).  Both are mixed integer linear programs (MIPs). 
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1. Heuristic Backbone Router and Link Assignment Model 

To generate a heuristic backbone topology, we first calculate the number 

of backbone routers at each node and then determine a set of links to connect 

the nodes. 

a. Backbone Router Assignment Model (BRAM) 

As discussed in Chapter II, backbone routers appear in pairs for 

redundancy reasons.  We therefore model the number of backbone routers, bi , 

at node  i  as 

 b
i
=

0 if 0 ≤ a
i
≤ g

1

2 if g
1
< a

i
≤ g

2

4 if g
2
< a

i
≤ g

3

6 if g
3
< a

i

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 (1.3) 

where   g1, g2, and g3  are constant parameters satisfying 0 < g1 ≤ g2 ≤ g3 .  The 

behavior of the Backbone Router Assignment Model is illustrated in Figure 12.   

 

 
Figure 12.   Backbone Router Assignment Model.  g1 = 4 , g2 = 7 ,   g3 = 12 . 
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b. Backbone Link Assignment Model (BLAM) 

Our heuristic topology generation model selects backbone links to 

connect the backbone nodes into a network.  As nodes are connected, they 

become part of the backbone topology.  We represent the backbone topology by 

the graph   G N,A( ) where  N  is the set of nodes and A  is the set of directed arcs 

in the backbone topology.  We use a pair of directed arcs to represent each 

bidirectional link.  We add arcs to A  in four successive stages.  The first stage 

involves connecting nodes with large bi  to each other, and in successive stages 

nodes with smaller  bi  values are connected to the existing and growing network.  

We begin by partitioning the set of all nodes N  into two subsets:  C , the set of all 

core nodes (nodes with backbone routers) and E , the set of all edge nodes 

(nodes without backbone routers).  We further partition C  into three additional 

subsets:   C1,   C2 , and   C3 . We now have a partition of N into four subsets: 

 C1 ∪C2 ∪C3 ∪E = N  (1.4) 

We define the parameter λ ∈ 2,4,6{ } to control the partition of the 

core nodes such that, 

  

C1 ≡ i ∈N | bi ≥ λ{ }
C2 ≡ i ∈N | bi = 4 and i ∉C1{ }
C3 ≡ i ∈N | bi = 2, i ∉C1, and i ∉C2{ }
E ≡ i ∈N | bi = 0{ }

 

The arcs connecting nodes in Cj  will be added in the   jth  iteration 

  ( j = 1,2,3)  and arcs connecting nodes in E  will be added in the 4th iteration. We 

begin with 
 
A = ∅{ }. 
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In the first stage, we use a procedure of link elimination based on 

triangles to choose links between nodes in C1.  For each combination of three 

nodes in   C1, we connect them to form a triangle, and let   d1,   d2 , and d3  

represent the lengths of the legs in descending order (d1 ≥ d2 ≥ d3 ).  Then for 

some fixed choice of  α ∈[1.0,2.0] , if 

 α d
1
≥ d

2
+ d

3
, (1.5) 

 
we eliminate the link associated with the longest leg.  We illustrate this procedure 

in Figure 13.  If  α = 1.0 , the longest legs will never be eliminated, and if 

 α = 2.0 , the longest legs will always be eliminated.  Finally, we add the arcs 

that represent the remaining links to A . 

 

Figure 13.   Link Elimination Procedure.  We consider each combination of three 
nodes.  The links between the nodes form the legs of a triangle.  If the 
length of the longest leg of the triangle, multiplied by the parameter 
 α ∈[1.0,2.0] , is greater than the sum of the lengths of the two shortest 
legs, then eliminate the link associated with the longest leg. 

In the second stage, we connect the nodes in C2 .  We choose links 

such that each node in   C2  connects to the two nearest nodes in   C1 and we add 

the appropriate arcs to  A . 
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In the third stage, we connect the nodes in C3 .  We choose links 

such that each node in   C3  is connected to the two nearest nodes among   C1, C2 , 

and   C3  and we add the appropriate arcs to A .  Note that in this stage, nodes in 

  C3  can be connected to other nodes in C3 . 

In the fourth stage, we connect the nodes in E .  We choose links 

such that each node in  E  is connected to the nearest node among   C1,   C2 , and 

  C3  and we add the appropriate arcs to A . 

The parameters λ  and α  have significant impact on the design of 

the backbone topology.  We illustrate this impact in Figure 14.  and in Figure 15.   
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Figure 14.   Networks generated with different values of λ . 

(a)  α = 1.06  λ = 6 , (b) α = 1.06 λ = 4  (c) α = 1.06 λ = 2  
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Figure 15.   First layer core networks generated with different values of α . 

(a)  α = 1.00  λ = 4 , (b) α = 1.20 λ = 4  (c) α = 2.00 λ = 4  

Due to the impact of parameters α  and λ  selecting their values is 

an important consideration. 
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2. Optimal Backbone Topology Models 

The backbone topology design problem (BTDP) has three competing 

objectives: (1) to minimize cost; (2) to maximize flow; and (3) to be robust in 

terms of throughput capacity in the presence of link and/or node failure.  The 

capacity and robustness objectives are counter to the cost objective.  To 

increase either one, additional network components must be added, resulting in 

an increased cost.  We will use goal based mixed integer programming to 

address this design problem.  We formulate two mixed integer linear programs 

(MIPs), one that maximizes flow subject to a budget goal and a second that 

minimizes cost subject to a minimum flow goal.  We implement robustness within 

each model via feasibility constraints. 

The BTDP answers two questions.  First, how many backbone routers 

should we place at each node?  Backbone routers occur in pairs based on our 

design motif and thus our choice is among zero, one, two, or three pairs.  

Therefore, we have four types nodes corresponding to the number of backbone 

router pairs present.  The backbone router configuration within each node type is 

deterministic.  Thus, the cost of each node type is a function of the individual 

router and link costs.  Likewise, the node type capacities are a function of the 

individual router capacities.  Because the backbone routers and the inter-node 

links occur in pairs and the structure is symmetric, we calculate the node 

capacities using only one of the routers in each pair.  We illustrate these 

relationships in Figure 16.   
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Figure 16.   Cost and Capacity Assumption for each Node Type.  The internal 

structure for each node follows directly from the design motifs observed in 
AS 7018 and illustrated in Figure 6.   
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The second question addressed by the BTDP is, which backbone topology 

links should be used to connect the nodes together?  A potential backbone 

topology link exists between every pair of nodes in the network.  We represent 

each of these bi-directional links by a pair of directed arcs.  We classify each 

node as a core node or edge node, depending on whether or not it has backbone 

routers.  Therefore, we have three types of arcs depending upon the core/edge 

classification of each arc's tail and head nodes.  Edge-Edge links are precluded 

by construction.  Each arc type has an associated cost and capacity, which is a 

function of its head and tail nodes.  We illustrate these relationships in Figure 16.  

We allow for null backbone topology arcs as a fourth arc type; they have no 

capacity or cost.  We list the backbone topology arc types in Table 4.   

 

Table 4.   Optimal Backbone Topology Model Arc Types 

 Node Classification
Arc Type Tail Head 

0 na na 
1 Edge Core 
2 Core Edge 
3 Core Core 
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We define the following indices, sets, parameters, and decision variables, 

to describe the backbone topology. 

Index Use and Sets 
 

  

i node; alias(j ); i ∈N
(i , j ) arc; (i , j ) ∈A
p arc type; p ∈P = 0,1,2,3{ }
g node type; g ∈G = 0,2,4,6{ }

 

 
Parameters 
 

  ai number of access routers at node i  

  
ug capacity of node of type g  

  
vp capacity of arc type p  
 
Decision Variables 
 

  

Gi
g binary variable equal to 1 if node i  has g backbone routers, 

0 otherwise.
 

  Hi binary variable equal to 1 if node i  is a core node, 0 otherwise.  

  
Eij

p binary variable equal to 1 if arc (i , j ) is of type p, 0 otherwise.  

 

A feasible region for the backbone topology, which is consistent with a hub 

and spoke design motif, is defined by the following system of equations, ϒ . 
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Formulation of Backbone Topology Feasible Region 

 

  
Gi

g

g∈G
∑ =1 ∀i ∈N  (A1) 

Gi
0 =1−Hi ∀i ∈N  (A2) 

  
Eij

0 ≤1 ∀(i , j )∈A  (A3) 

  
Eij

1 ≤Hi ∀(i , j )∈A  (A4) 

  
Eij

1 ≤ 2 −Hi −Hj ∀(i , j )∈A  (A5) 

  
Eij

2 ≤Hj ∀(i , j )∈A  (A6) 

  
Eij

2 ≤ 2 −Hi +Hj ∀(i , j )∈A  (A7) 

  
Eij

3 ≤Hi ∀(i , j )∈A  (A8) 

  
Eij

3 ≤Hj ∀(i , j )∈A  (A9) 

  
Eij

p

p
∑ =1 ∀(i , j )∈A  (A10) 

  
Eij

0 = E ji
0 ∀(i , j )∈A  (A11) 

  
Eij

1 = E ji
2 ∀(i , j )∈A  (A12) 

  
Eij

3 = E ji
3 ∀(i , j )∈A  (A13) 

  
ajv1Eij

1 +v3Eij
3( )

j|(i , j )∈A
∑ + aiv1Hi ≤ ugGi

g

g∈G
∑ ∀i ∈N  (A14) 

  
Eij

1

j|(i , j )∈A
∑ ≤1 ∀i ∈N  (A15) 

Eij
3

j|(i , j )∈A
∑ ≥ 2Hi ∀i ∈N  (A16) 

  

Gi
g ∈ 0,1{ } ∀i ∈N,∀g ∈G

Hi ∈ 0,1{ } ∀i ∈N

Eij
p ∈ 0,1{ } ∀(i , j )∈A,∀p ∈P

 

ϒ =
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Constraint (A1) requires that every node can be of only one type. 

Constraint (A2) requires that any node with backbone routers is a core node. 

Constraint (A3) makes it is feasible for every arc to be a null arc (type 0). 

Constraints (A4) and (A5) require that a core-edge arc (type 1) is feasible 

between any two nodes if and only if the tail is a core node and the head is an 

edge node. Constraints (A6) and (A7) require that an edge-core arc (type 2) is 

feasible between any two nodes if and only if the tail is an edge node and the 

head is a core node. Constraints (A8) and (A9) require that a core-core arc is 

feasible only between a pair of core nodes. Constraint (A10) requires that every 

arc must be assigned a type and can only be of one type.  Equations (A11), 

(A12), and (A13) require arc symmetry. Constraint (A14) requires the node 

capacity.  A node can support as many outgoing arcs such that the sum of the 

outgoing arc capacities is less the node's capacity.  The core-edge arc capacities 

are a multiple of the number of access routers in the edge node. Constraint (A15) 

requires that an edge node will only connect to one other node. Constraint (A16) 

requires that core nodes must have connections to at least two other core nodes. 

Given a feasible backbone topology, the BTDP reduces to a multi-

commodity network flow problem, were each pair of nodes in the network forms a 

source to destination (s-t) pair.  Nodes in the network communicate under a 

gravity flow model, where the traffic between each s-t pair is proportional to the 

product of the number of customers at each node and a constant of 

proportionality. 
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Consider the following additional indices, parameters, and variables. 

Index Use  
 
  i node; alias(s,t ); i ∈N  
 
Sets 
 
  R set of all return arcs  
 
Parameters 
 

  
bs number of customers at node s  

  
cg cost of node type g  

  
dij distance from node i  to node j  

  
ep cost per unit distance of arc of type p  

  
fp fixed cost of using arc of type p  

  budget maximum allowed cost  
flow minimum flow goal  
 
Decision Variables 
 
 ρ traffic scale parameter  

  
X ij

t flow on arc (i , j ) with destination t  

  
Zts flow on return arc (t ,s)  

The formulation of the Maximum Flow Model is as follows. 
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Maximum Flow Model Formulation 

  
max Zts

(s ,t )∈R
∑  (B1) 

  

s.t. cgGi
g

i∈N,g∈G
∑ + 2 aif1Hi

i
∑ + aj f1 + dije1( )Eij

1

(i , j )∈A
∑

+ ai f2 + dije2( )Eij
2

(i , j )∈A
∑ + fp + dijep( )Eij

p

(i , j )∈A
p∈{0,3}

∑ ≤ budget
 (B2) 

  
X ij

t

t∈N
∑ ≤ v0Eij

0 + ajv1Eij
1 + aiv1Eij

2 +v2Eij
3 ∀(i , j )∈A  (B3) 

  

X ij
t

j|(i , j )∈A
∑ − X ji

t

j|(i , j )∈A
∑ =

Zti , if i ≠ t
− Zts

s
∑ , if i = t

⎧

⎨
⎪

⎩
⎪

∀i ∈N,∀t ∈N  (B4) 

  
Zts − ρbsbt = 0 ∀(s,t )∈R  (B5) 

  

X
ij
t ≥ 0 ∀(i , j ) ∈A,∀t ∈N

Z
ts
≥ 0 ∀(s,t ) ∈R

ρ    URS
G

i
g ,H

i
,E

ij
p ∈ϒ

 

The objective function (B1) is the sum of the flows on all return arcs.  The 

objective function value increases with the proportionality constant ρ . 

Constraint (B2) enforces the budget.  The first term accounts for the cost 

of a node based on its type.  The second term accounts for the cost of 

connecting access routers within a hub node to the hub. The third term accounts 

for the cost of connecting access routers in non-hub nodes to hub nodes.  The 

fourth term accounts for the cost of connecting hub nodes to other hub nodes.  

The sum of all the costs must be less then the budget. 

Constraints (B3) through (B5) represent the multi-commodity flow model 

constraints.  Constraint (B3) enforces the link capacity, equation (B4) enforces 

balance of flow at each node, and constraint (B5) enforces that source-

destination flows between pairs of nodes will be proportional to the number of 

customers at each node. 

The Minimum Cost Model is formulated as follows. 
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Maximum Flow Model Formulation 

  

min cgGi
g

i∈N,g∈G
∑ + 2 aif1Hi

i∈N
∑ + aj f1 + dije1( )Eij

1

(i , j )∈A
∑

+ a
i

f
2
+ d

ij
e

2( )Eij
2

(i , j )∈A
∑ + fp + dijep( )Eij

p

(i , j )∈A
p∈{0,3}

∑
 (C1) 

  
s.t. Z ts

(s ,t )∈R
∑ ≥ flow  (C2) 

  
X ij

t

t∈N
∑ ≤ v0Eij

0 + ajv1Eij
1 + aiv1Eij

2 +v2Eij
3 ∀(i , j )∈A  (C3) 

  

X ij
t

j:(i , j )∈A
∑ − X ji

t

j:(i , j )∈A
∑ =

Zti , if i ≠ t
− Zts

s∈N
∑ , if i = t

⎧

⎨
⎪

⎩
⎪

∀i ∈N,∀t ∈N  (C4) 

Zts − ρbsbt = 0 ∀(s,t )∈R  (C5) 

  

X
ij
t ≥ 0 ∀(i , j ) ∈R,t ∈N

Z
ts
≥ 0 ∀(s,t ) ∈R

ρ    URS
G

i
g ,H

i
,E

ij
p ∈ϒ

 

The objective (C1) represents the cost of the network.  Each term is the 

same as the terms in equation (B2).  Constraint (C2) enforces that the total flow 

across return arcs must be greater then the flow goal.  Constraints (C3) through 

(C5) represent the multi-commodity flow model constraints and are the same as 

constraints (B3) through (B5). 
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C. POST-PROCESSING: BUILDING A ROUTER-LEVEL MAP 

In the Post-Processing Stage, we generate a router-level topology from 

the backbone topology.  The router-level topology is deterministic and based on 

a design motif of a redundant hierarchical tree as described in Figure 16.  Inputs 

to this stage are the number of access routers and backbone routers at each 

node, along with, the backbone topology links, which connect the nodes.  We 

illustrate this stage in Figure 17.  and Figure 18.   

 

 
Figure 17.   Post Processing Stage 

 
 

 
Figure 18.   We build a router-level topology from the backbone topology in the 

post processing stage.  a. Backbone representation with (2) two-backbone 
router core nodes.  b. Equivalent router-level topology. 
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IV. ANALYZING TOPOLOGIES 

In the previous chapters, we have analyzed an existing ISP network and 

identified relationships between both its structure and the assumed underlying 

customer population that it supports.  Using these relationships, we have 

developed the means to generate backbone and router-level topologies for any 

collection of geographically dispersed customer populations.  We have 

formulated three models for generating the backbone topology of the network, 

one using a heuristic method and two using optimal methods.   

We now generate topologies using each of the backbone topology 

generation models developed in Chapter III.  To allow easy comparison of the 

topologies, we use the following methodology.  We first generate a topology 

using the heuristic generation model.  We then use the cost and throughput of 

this topology as the budget and minimum flow constraints in the optimization-

based generation models.  Furthermore, we use the topology generated by the 

heuristic as an initial feasible solution in the optimization models.  We compare 

the topologies using both the backbone and router representations. We illustrate 

this methodology in Figure 19.   

 
Figure 19.   Analysis Methodology 
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A. ANALYSIS DATA SETS 

We use the set of MSAs for AS 7018 as the input data for our topology 

generation and analysis.  We select eight subsets of the MSA list to represent 

customer populations that range from regional (e.g., Southern California and 

Eastern United States) to national (e.g., the entire United States).  In addition to 

the number of MSAs, we also try to capture different geometries, e.g., national 

network with many large MSAs (hub heavy) and national network with many 

small MSAs (spoke heavy). 

A summary of the MSA subsets appears in Table 5.   The full MSA data 

set and subsets are listed in the Appendix.  We illustrate the MSA subsets in 

Figure 20.  We represent the MSAs by dots that are proportional in size to the 

MSA's population. 

Table 5.   Metropolitan Statistical Area Subset Summary 

Subset Number of MSAs Description 
1 7 Small Network 
2 10 Southern California 
3 14 Chicago-Atlanta-New York 
4 17 Western United States 
5 52 Eastern United States 
6 79 United States Edge Heavy 
7 42 United States Core Heavy 
8 89 All MSAs 

 
We list the router and link cost and capacities used in the models in Table 

6.  We use fixed hardware costs based upon a recent Cisco pricing catalog 

(Cisco, 2003). 

Throughout the remainder of this chapter, we use the terms MSA and 

node interchangeably.  As before, Core nodes are nodes that have backbone 

routers and edge nodes are nodes that do not have backbone routers. Equal 

Cost refers to the Maximum Flow Model solution and Equal Flow refers to the 

Minimum Cost Model solution.  
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Figure 20.   Metropolitan Statistical Area Subsets 1-8 
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Table 6.   Model Cost and Capacity Parameters 

Network Component Capacity [Gps] fixed [$K] Per Mile [$K/mile] 
Access Router 10 0 - 

Backbone Router 150 125 - 
Access-Backbone Link 1 15 1 

Backbone-Backbone Link 10 350 5 
 

1. Subset 1: Small Network 

Subset 1 contains only 7 nodes.  One core node has four backbone 

routers, while the others each have two.  The core nodes are fully connected and 

the edge nodes each connect to one of the core nodes. 

The three topologies appear in Figure 21.  The equal cost topology is the 

same as the heuristic topology, while in the equal flow topology solution the four-

backbone router node becomes a two-backbone router node.  A constraint in the 

optimal models requires that each core node connect to at least two other core 

nodes.  This constraint implies that a network must have at least three core 

nodes. 

We list the numerical results of the Backbone Generation Models on 

subset 1 in Table 7.   

 

Table 7.   Subset 1 Results 

 Cost (% Heuristic) [$K] Flow (%Heuristic)[Gps] 

Heuristic 32,625  38.74  

Equal Cost 32,625 (100.0%) 38.74 (100.0%) 

Equal Flow 30,685 (94.1%) 38.74 (100.0%) 
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Figure 21.   Subset 1 Backbone Topology Generation Solutions.  a. Heuristic Model 

Solution.  b. Optimal Maximum Flow Modes (Equal Cost) solution.  c. 
Optimal Minimum Cost Model (Equal Flow) solution. 
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2. Subset 2: Southern California Region 

Subset 2 represents a small regional area, specifically Southern 

California, Arizona and Nevada.  The subset has 10 nodes.  Most of the nodes 

are moderately sized and serve as core nodes in the heuristic solution.  Three of 

the five core nodes have more than two backbone routers each. 

The equal cost solution achieves considerably higher throughput by 

redistributing budget away from the large core nodes and then promoting all 

edge nodes to core nodes.  This dramatically increases the capacity of all nodes 

and arcs throughout the network. 

The equal flow topology solution downsizes the four- and six-backbone 

router core nodes to two-backbone router core nodes and eliminates one core-

core link reducing the link structure to a loop. 

We list the numerical results of the Backbone Generation Models on 

subset 2 in Table 8.   

 

Table 8.   Subset 2 Results 

 Cost (% Heuristic) [$K] Flow (%Heuristic)[Gps] 

Heuristic 30,384  32.24  

Equal Cost 30,413 (100.1%) 195.35 (605.8%) 

Equal Flow 23,295 (76.7%) 32.24 (100.0%) 
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Figure 22.   Subset 2 Backbone Topology Generation Solutions.  a. Heuristic Model 

Solution.  b. Optimal Maximum Flow Modes (Equal Cost) solution.  c. 
Optimal Minimum Cost Model (Equal Flow) solution. 
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3. Subset 3:  Three Large MSAs 

Subset 3 represents a region with three large nodes surrounded by a 

handful of small nodes.  The subset has 14 nodes total.  The heuristic assigns 

backbone routers to each of the large nodes and no backbone routers to any of 

the small nodes.  The core nodes are then fully connected into a triangle with the 

edge nodes connecting to the nearest core node. 

In the equal cost solution, we find a similar redistribution of the 

infrastructure as in subset 2.  Large core nodes are downsized and all but two 

edge nodes are promoted to core nodes.  The core nodes are connected in a 

loop.  

In the equal flow solution, we also find all of the large core nodes reduced 

and several of the edge nodes promoted.  However, the core nodes are not 

connected in one loop but rather two small triangles linked by one long link.   

We illustrate the three solutions in Figure 23.  We list the numerical results 

of the Backbone Generation Models on subset 3 in Table 9.   

 

Table 9.   Subset 3 Results 

 Cost (% Heuristic) [$K] Flow (%Heuristic)[Gps] 

Heuristic 47,695  38.74  

Equal Cost 47,654 (99.9%) 158.04 (414.5%) 

Equal Flow 37,715 (79.1%) 38.74 (100.0%) 
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Figure 23.   Subset 3 Backbone Topology Generation Solutions.  a. Heuristic Model 

Solution.  b. Optimal Maximum Flow Modes (Equal Cost) solution.  c. 
Optimal Minimum Cost Model (Equal Flow) solution. 
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4. Subset 4: Western United States 

Subset 4 represents the Western United States.  It has 17 nodes.  The 

heuristic assigns backbone routers to six of the nodes making them core nodes 

and then connects them in a loop with the edge nodes connecting to the nearest 

core node.   

In the equal cost solution, we see the same pattern of the previous two 

subsets.  In the equal flow solution, we find a simple reduction of all of the large 

core nodes to two-backbone router core nodes.  No links are eliminated. 

We illustrate the solutions in Figure 24.  We list the numerical results of 

the Backbone Generation Models on subset 4 in Table 10.   

 

Table 10.   Subset 4 Results 

 Cost (% Heuristic) [$K] Flow (%Heuristic)[Gps] 

Heuristic 53,910  40.08  

Equal Cost 53,659 (99.5%) 126.22 (314.9%) 

Equal Flow 45,910 (85.2%) 40.08 (100.0%) 
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Figure 24.   Subset 4 Backbone Topology Generation Solutions.  a. Heuristic Model 

Solution.  b. Optimal Maximum Flow Modes (Equal Cost) solution.  c. 
Optimal Minimum Cost Model (Equal Flow) solution. 
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5. Subset 5: North Eastern United States 

Subset 5 represents the North Eastern United States.  It has 52 nodes the 

vast majority with small populations.  The heuristic builds five core nodes.  The 

three six and four backbone router core nodes are fully connected in a triangle 

and the two backbone router core nodes form a loop beginning an ending at one 

of the six backbone router core nodes.  The edge nodes all connect to one of the 

core nodes. 

Due to run time considerations, we implement an additional constraint in 

the equal cost and equal flow models for subsets 5, 6, 7, and 8.  This constraint 

fixes the heuristic solution's edge nodes preventing them being upgraded to core 

nodes.  For subset 5, we found no improvement in the equal cost solution's 

throughput. 

In the equal cost solution, cost was improved by reducing all of the core 

nodes to two-backbone routers and changing core-core links to form a loop. 

We illustrate the three solutions in Figure 25.  We list the numerical results 

of the Backbone Generation Models on subset 5 in Table 11.   

 

Table 11.   Subset 5 Results 

 Cost (% Heuristic) [$K] Flow (%Heuristic)[Gps] 

Heuristic 92,899  75.0  

Equal Cost 92,899 (100.0%) 75.0 (100.0%) 

Equal Flow 77,080 (83.0%) 75.0 (100.0%) 
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Figure 25.   Subset 5 Backbone Topology Generation Solutions.  a. Heuristic Model 

Solution.  b. Optimal Maximum Flow Modes (Equal Cost) solution.  c. 
Optimal Minimum Cost Model (Equal Flow) solution. 
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6. Subset 6: United States Edge Heavy 

Subset 6 represents the United States with a large number of small MSAs.  

It has 79 nodes.  The heuristic builds nine core nodes.  The core nodes are 

connected by a mesh like pattern of links with the edge nodes connecting to the 

nearest core node. 

The equal cost solution is identical to the heuristic solution due to the edge 

node restriction discussed in subset 5. 

We still improve the cost with the equal flow solution by reducing all of the 

core nodes to two -backbone routers and changing core-core links to form a loop 

as in subset 5. 

We illustrate the three solutions in Figure 26.  We list the numerical results 

of the Backbone Generation Models on subset 6 in Table 12.   

 

Table 12.   Subset 6 Results 

 Cost (% Heuristic) [$K] Flow (%Heuristic)[Gps] 

Heuristic 256,355  130.99  

Equal Cost 256,355 (100.0%) 130.99 (100.0%) 

Equal Flow 148,174 (57.8%) 130.99 (100.0%) 
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Figure 26.   Subset 6 Backbone Topology Generation Solutions.  a. Heuristic Model 

Solution.  b. Optimal Maximum Flow Modes (Equal Cost) solution.  c. 
Optimal Minimum Cost Model (Equal Flow) solution. 
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7. Subset 7: United States Core Heavy 

Subset 7 represents the United States with only a few number of small 

MSAs.  It has 42 nodes.  The heuristic builds 18 core nodes.  The core nodes are 

connected by a mesh like pattern of links with the edge nodes connecting to the 

nearest core node. 

The equal cost solution is identical to the heuristic solution due to the edge 

node restriction discussed in subset 5. 

We still improve the cost with the equal flow solution by reducing all of the 

core nodes to two-backbone routers and changing core-core links to form a loop 

as in subset 5. 

We illustrate the solutions in Figure 27.  We list the numerical results of 

the Backbone Generation Models on subset 7 in Table 13.   

 

Table 13.   Subset 7 Results 

 Cost (% Heuristic) [$K] Flow (%Heuristic)[Gps] 

Heuristic 274,154  126.00  

Equal Cost 274,154 (100.0%) 126.00 (100.0%) 

Equal Flow 137,578 (50.2%) 126.00 (100.0%) 
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Figure 27.   Subset 7 Backbone Topology Generation Solutions.  a. Heuristic Model 

Solution.  b. Optimal Maximum Flow Modes (Equal Cost) solution.  c. 
Optimal Minimum Cost Model (Equal Flow) solution. 
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8. Subset 8: All MSAs 

Subset 8 represents the United States including all of the MSAs.  It has 89 

nodes.  The heuristic builds 18 core nodes.  The core nodes are connected by a 

mesh like pattern of links with the edge nodes connecting to the nearest core 

node. 

The equal cost solution is identical to the heuristic solution due to the edge 

node restriction discussed in subset 5. 

We still improve the cost with the equal flow solution by reducing all of the 

core nodes to two-backbone routers and changing core-core links to form a loop 

as in subset 5. 

We illustrate the solutions in Figure 28.  We list the numerical results of 

the Backbone Generation Models on subset 8 in Table 14.   

 

Table 14.   Subset 8 Results 

 Cost (% Heuristic) [$K] Flow (%Heuristic)[Gps] 

Heuristic 302,221  169.61  

Equal Cost 302,221 (100.0%) 169.61 (100.0%) 

Equal Flow 159,709 (52.8%) 169.61 (100.0%) 
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Figure 28.   Subset 8 Backbone Topology Generation Solutions.  a. Heuristic Model 

Solution.  b. Optimal Maximum Flow Modes (Equal Cost) solution.  c. 
Optimal Minimum Cost Model (Equal Flow) solution. 
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B. ANALYSIS RESULTS 

The results of the backbone topology generation stage are interesting and 

informative.  They indicate that backbone topology generation models behave as 

expected.  In each case, the optimal models produced a solution at least as good 

as the heuristic model and for the most part improved upon it.  However, the 

backbone topologies are abstractions of router-level topologies, which are of real 

interest to us.  Therefore, for each case, we generate router-level topologies from 

the backbone topologies and using these, we reevaluate cost and total 

throughput.  We illustrate the results in Figure 29.   

The cost of the generated router-level topologies matches exactly the cost 

of the backbone topologies, and it increases with the size of the network.  We list 

the number of router and arcs (two arcs per link) in Table 16.   

The throughput of the router-level topologies follows a similar trend, 

increasing as the network size increases.  However, the throughputs are not the 

same as the backbone representations.  The backbone topology representation 

of a network ignores the router structure internal to nodes, and the backbone flow 

is based a maximum flow network model with no restrictions with regard to traffic 

engineering.  We would expect then, the maximum flow on a backbone topology 

to be an upper bound on the maximum flow that the router-level topology could 

achieve.  In our examples, this is not always the case.  Many of the router 

network representations achieve higher throughputs then the backbone 

representations as seen in Table 15.   

Table 15.   Throughput achieved by the router topology representation relative to the 
backbone topology representation. 

 Subset 
 1 2 3 4 5 6 7 8 

Heuristic 100% 199% 356% 238% 100% 169% 254% 224% 
Equal Cost 100% 37% 83% 73% 155% 169% 254% 224% 
Equal Flow 100% 273% 211% 238% 143% 96% 98% 96% 
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Figure 29.   Router-level topology cost and flow comparisons for subsets 1-8.   

a. Cost comparison.  b. Total throughput comparison using successive 
shortest path routing. 

Table 16.   Router and Arc Counts for Router-Level Topologies 

 Subset 
Model 1 2 3 4 5 6 7 8 
Heuristic         
Total Routers 36 82 95 104 183 320 333 429 
Total Arcs 140 330 386 414 738 1322 1386 1786 
Equal Cost         
Total Routers 36 84 101 110 173 320 333 429 
Total Arcs 140 320 380 412 684 1322 1386 1786 
Equal Flow         
Total Routers 34 74 89 94 173 292 303 391 
Total Arcs 130 286 348 364 680 1150 1176 1532 
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From a customer viewpoint, the total throughput capacity of the network is 

not of great concern.  Rather, the ability of the network to deliver an expected 

level of bandwidth is more important.  Therefore, for both shortest path and 

successive shortest path routing, we calculate the downstream customer 

bandwidth delivered by each router network when operating at maximum 

capacity.  We assume that each customer expects 10 megabits per second of 

bandwidth (0.01 Gps).  We illustrate the results in Figure 20 and Figure 31.  

Under single shortest path routing (naïve traffic engineering), the customers of 

the larger networks, do not receive the expected bandwidth.  However, under 

successive shortest path routing (best case traffic engineering), the customers in 

every network receive the expected bandwidth.  This illustrates the importance of 

traffic engineering and provides a secondary type of validation.  The assumed 

parameters of our model (relative capacities) are reasonable and consistent with 

our design objectives. 

We also consider router utilization, which is the fractional amount of a 

router's total throughput capacity that is used. For the eight subsets and three 

backbone generation models (under maxflow conditions), we illustrate access 

router utilization in Figure 32.  and backbone router utilization in Figure 33.  In all 

cases, backbone and access have considerable excess capacity indicating that 

the bottlenecks in the networks are links not routers. 

We have evaluated the network topologies using two of three performance 

objectives, cost and throughput.  We find that our heuristic produces topologies 

for which both the cost or the throughput can be improved upon using optimal 

methods.  The third performance objective, robustness, we do not evaluate in 

this Thesis.  Previous work by Barkley (2008) lays out a model for optimally 

attacking router-level topologies that follows in the spirit of Brown et al. (2006). 
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Figure 30.   Achieved Customer Bandwidth (Shortest Path Routing) 

 
Figure 31.   Achieved Customer Bandwidth (Successive Shortest Path Routing) 
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Figure 32.   Individual Backbone Router Utilization Under Maxflow Conditions. The 

backbone routers include routers from all eight MSA subsets and each 
backbone generation model.  Backbone router utilization depends upon 
the topology structure and traffic engineering used in the network.  The 
wide variation in utilization with a majority of routers being used indicates 
reasonable resource allocation.  Nearly all (99.65%) of backbone routers 
are utilized, some more then others, with the vast majority under 50% 
utilization. 
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Figure 33.   Individual Access Router Utilization Under Maxflow Conditions.  Because 

access routers demand traffic in proportion to the number of customers, 
the total utilization of access routers increases linearly with customer 
count.  Routers from each subset and backbone model (heuristic, equal 
cost or equal flow) lie on separate lines. 
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V. CONCLUSIONS 

In this thesis, we have reverse-engineered network design principles from 

real world ISP topology and census population data.  We have used these design 

principles to build a topology generation methodology and supporting models.  

We then used this topology generation process to produce realistic router-level 

topology maps of different sizes ranging from small regional maps to large 

national networks.  Finally, we evaluated these topologies for cost and 

throughput performance to (1) validate that the generated topologies are in fact 

realistic and consistent with what we know about Internet networks and (2) to 

compare and contrast heuristic and optimal model solutions. 

The network topology process and models presented in this thesis do 

produce realistic models that reflect the observed structure of real ISP 

topologies.  We validate this primarily by throughput analysis and measuring the 

delivered bandwidth to each customer in the network.  

We found that, at the backbone level of representation, optimal design 

models were able to improve upon as least one of the performance objectives, 

cost or throughput, by fixing the other.  At the router-level representation, cost or 

throughput improvement did not always correspond to the backbone 

representation results.  For example, the equal cost model throughput was higher 

then the heuristic and the equal flow cost equal to the heuristic, at the backbone 

representation level.  For the same backbone solutions, represented at the 

router-level, the heuristic solution might have higher throughput then the equal 

cost and the equal flow solutions as in subset 3.  More work is required to 

understand why this is so. 

In addition to the numerical results, we have developed in this thesis a 

decision support tool using EXCEL/VBA and GAMS/CPLEX.  This tool provides a 

computational environment where researchers can continue to explore the 

relationships between network topology and network functionality. 
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The work in this thesis is based upon several assumptions.  We have 

assumed that the design motifs observed in AS 7018 represent good engineering 

practice and reflect the structure of the Internet broadly.  While we believe the 

former to be true, we know the latter is not.  There are other "styles of design" 

that may result in dramatically different topologies.  For example, anecdotal and 

empirical evidence for AS 1239 (Sprintlink) suggests that the backbone follows a 

ring-based design (as opposed to hub-and-spoke) and the internal POP structure 

follows a hypercube (instead of hierarchical) design.  The methodology 

presented in this thesis would work equally well to incorporate those alternate 

design motifs, but additional modeling work would be required to include these 

options. 

We have assumed that routers are either one of two types, backbone or 

access.  We know this is not true and many additional types of routers exist, 

even in AS 7018.  For example, terabit backbone router (TBR) pairs are found in 

several of the larger POPs in AS 7018.  In addition, we recognize that the cost 

and capacity values used as input to our models do not reflect actual equipment, 

but we have made every attempt to ensure that they are both externally 

consistent (approximate to real equipment, as in Alderson et al. 2004) and 

internally consistent (relative to other parameter values in our model).  We have 

tried to apply this approach of "realistic but fictitious" modeling throughout. 

We have assumed a gravity flow model of network traffic in which each 

pair of communicating routers exchange traffic in proportion to the product of 

their customer connections.  This was also generalized to the backbone topology 

design were each pair of nodes communicated in proportion to the product of the 

number of customers in the nodes.  In reality, proportionate flow between all 

customers on the network is not accurate but suffices for large-scale capacity 

analysis. 

Relaxation of any of these assumptions provides many opportunities for 

future work. 
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APPENDIX 

Full Data Set 
 
Index MSA MSA Name Population Lat Lon 
1 10420 Akron, OH 694,960 41.1 -81.5 
2 10580 Albany-Schenectady-Troy, NY 825,875 42.7 -73.8 
3 10740 Albuquerque, NM 729,649 35.1 -106.7 
4 12060 Atlanta-Sandy Springs-Marietta, GA 4,247,981 33.7 -84.4 
5 12420 Austin-Round Rock, TX 1,249,763 30.3 -97.7 
6 12580 Baltimore-Towson, MD 2,552,994 39.3 -76.6 
7 13644 Bethesda, MD 1,068,618 39.0 -77.0 
8 13820 Birmingham-Hoover, AL 1,052,238 33.5 -86.8 
9 14460 Boston, MA 4,391,344 42.4 -71.1 
10 14860 Bridgeport-Stamford-Norwalk, CT 882,567 41.2 -73.2 
11 15380 Buffalo-Niagara Falls, NY 1,170,111 42.9 -78.9 
12 15804 Camden, NJ 1,186,999 39.9 -75.1 
13 16580 Champaign-Urbana, IL 210,275 40.1 -88.2 
14 16740 Charlotte-Gastonia-Concord, NC 1,330,448 35.2 -80.8 
15 16974 Chicago, IL 7,628,412 41.9 -87.7 
16 17140 Cincinnati-Middletown, OH 2,009,632 39.2 -84.5 
17 17460 Cleveland-Elyria-Mentor, OH 2,148,143 41.5 -81.7 
18 17820 Colorado Springs, CO 537,484 38.8 -104.8 
19 17900 Columbia, SC 647,158 34.0 -81.0 
20 19124 Dallas, TX 3,451,226 32.8 -96.8 
21 19340 Davenport-Moline-Rock Island, IA 376,019 41.5 -90.6 
22 19380 Dayton, OH 848,153 39.8 -84.2 
23 19740 Denver-Aurora, CO 2,157,756 39.7 -105.0 
24 19780 Des Moines-West Des Moines, IA 481,394 41.6 -93.6 
25 19804 Detroit, MI 2,061,162 42.3 -83.0 
26 20764 Edison, NJ 2,173,869 40.3 -74.3 
27 22744 Fort Lauderdale, FL 1,623,018 26.1 -80.1 
28 23104 Fortworth, TX 1,710,318 32.7 -97.3 
29 24340 Grand Rapids-Wyoming, MI 740,482 43.0 -85.7 
30 24660 Greensboro-High Point, NC 643,430 36.1 -79.8 
31 25420 Harrisburg-Carlisle, PA 509,074 40.3 -76.9 
32 25540 Hartford-West Hartford-East Hartford, CT 1,148,618 41.8 -72.7 
33 26180 Honolulu, HI 876,156 21.3 -157.9 
34 26420 Houston-Sugar Land-Baytown, TX 4,715,407 29.8 -95.4 
35 26900 Indianapolis-Carmel, IN 1,525,104 39.8 -86.2 
36 27260 Jacksonville, FL 1,122,750 30.3 -81.7 
37 28140 Kansas City, MO 1,836,038 39.1 -94.6 
38 28700 Kingsport-Bristol-Bristol, TN 298,484 36.7 -82.0 
39 29820 Las Vegas-Paradise, NV 1,375,765 36.2 -115.1 
40 30780 Little Rock-North Little Rock-Conway, AR 610,518 34.7 -92.3 
41 31084 Los Angeles, CA 9,519,338 33.9 -118.3 
42 31140 Louisville/Jefferson County, KY 1,161,975 38.3 -85.8 
43 31340 Lynchburg, VA 228,616 37.4 -79.1 
44 31540 Madison, WI 501,774 43.1 -89.4 
45 31700 Manchester-Nashua, NH 380,841 43.0 -71.5 
46 32820 Memphis, TN 1,205,204 35.1 -90.0 
47 33124 Mimai, FL 2,253,362 25.8 -80.2 
48 33340 Milwaukee-Waukesha-West Allis, WI 1,500,741 43.0 -87.9 
49 33460 Minneapolis-St. Paul-Bloomington, MN 2,968,806 45.0 -93.3 
50 34980 Nashville-Davidson--Murfreesboro--Franklin, TN 1,311,789 36.2 -86.8 
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Index MSA MSA Name Population Lat Lon 
51 35004 Long Island, NY 2,753,913 40.8 -73.1 
52 35084 Newark, NJ 2,098,843 40.8 -74.4 
53 35380 New Orleans-Metairie-Kenner, LA 1,316,510 30.0 -90.1 
54 35644 New York, NY 11,296,377 40.7 -74.0 
55 36084 Oakland, CA 2,392,557 37.8 -122.3 
56 36420 Oklahoma City, OK 1,095,421 35.5 -97.5 
57 36540 Omaha-Council Bluffs, NE 767,041 41.3 -95.9 
58 36740 Orlando-Kissimmee, FL 1,644,561 28.5 -81.4 
59 37964 Philadelphia, PA 3,849,647 40.0 -75.2 
60 38060 Phoenix-Mesa-Scottsdale, AZ 3,251,876 33.4 -112.1 
61 38300 Pittsburgh, PA 2,431,087 40.4 -80.0 
62 38860 Portland-South Portland-Biddeford, ME 487,568 43.7 -70.3 
63 38900 Portland-Vancouver-Beaverton, OR 1,927,881 45.5 -122.7 
64 39300 Providence-New Bedford-Fall River, RI 1,582,997 41.8 -71.4 
65 39580 Raleigh-Cary, NC 797,071 35.8 -78.6 
66 40060 Richmond, VA 1,096,957 37.6 -77.5 
67 40140 Riverside-San Bernardino-Ontario, CA 3,254,821 34.0 -117.4 
68 40380 Rochester, NY 1,037,831 43.2 -77.6 
69 41180 St. Louis, MO 2,721,491 38.7 -90.4 
70 41620 Salt Lake City, UT 968,858 40.8 -111.9 
71 41700 San Antonio, TX 1,711,703 29.4 -98.5 
72 41740 San Diego-Carlsbad-San Marcos, CA 2,813,833 32.7 -117.2 
73 41860 San Francisco, CA 4,123,740 37.8 -122.4 
74 41940 San Jose-Sunnyvale-Santa Clara, CA 1,735,819 37.4 -122.1 
75 42044 Anaheim, CA 2,846,289 33.8 -117.9 
76 42644 Seattle, WA 2,343,058 47.6 -122.3 
77 43780 South Bend-Mishawaka, IN 316,663 41.7 -86.3 
78 44060 Spokane, WA 417,939 47.7 -117.4 
79 44180 Springfield, MO 368,374 37.2 -93.3 
80 45060 Syracuse, NY 650,154 43.0 -76.1 
81 45300 Tampa-St. Petersburg-Clearwater, FL 2,395,997 27.9 -82.5 
82 45940 Trenton-Ewing, NJ 350,761 40.2 -74.7 
83 46060 Tucson, AZ 843,746 32.2 -110.9 
84 46140 Tulsa, OK 859,532 36.2 -96.0 
85 47260 Virginia Beach-Norfolk-Newport News, VA 1,576,370 36.8 -76.3 
86 47644 Warren, MI 2,391,395 42.5 -83.2 
87 47894 Washington D.C. 3,727,565 38.9 -77.1 
88 48424 West Palm Beach, FL 1,131,184 26.7 -80.1 
89 49340 Worcester, MA 750,963 42.3 -71.8 

 
Data Subsets 
 
Subset Included MSAs Description 

1 1-5, 13, 37 Small 

2 39*, 41, 55, 60, 67, 72-75, 83 Southern California 

3 4, 8, 12, 15-17, 19, 31, 38, 49, 51, 52, 54, 85 Chicago-Atlanta-New York 

4 3, 18, 23, 39, 41, 55, 60, 63, 67, 70, 72-76, 78, 83 West 

5 1-2, 6-17, 19, 21-22, 24-27, 32, 35-36, 38, 43-45, 47-49, 51-54, 57-59, 61-
62, 64-66, 68, 77, 80, 82, 85-89 

East 

6 1-4, 6-8, 10-32, 35-36, 38-57, 61-71, 73-86, 88-89 Spoke Heavy 

7 4-6, 9, 15-17, 20, 23, 25-28, 34-35, 37, 39, 41, 47, 49, 51-52, 54-55, 58-
61, 63-64, 67, 69, 71-76, 81, 85-87 

Hub Heavy 

8 1-89 All MSAs 

*Node 39 in subset 2 has a weight of 2.0 
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